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. We consider the equations describing slow nonstationary plastic flows [l]: 
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where Ul, u2, u s are the components of the velocity vector; p is the hydrostatic pressure; 
sij are the components of the stress tensor deviator; X is a nonnegative function; k s is 
the flow limit for pure shear; repeated subscripts indicate summation; a subscript following 
a comma will indicate differentiation with respect to a spatial variable. 

It should be remarked that the system of equations (i.i) is widely employed in 
engineering calculations. 

2. It is well known that the system of equation (I.i), after the elimination from it 
of X and sij, admits a group of continuous transformations [2] generated by the operators: 

a o 
X o -  o t ,  x i -  az i U = 1 , 2 , 3 ) ,  

a 0 o 0 

c9 .9 0 
r l  = ~ - ~ % -  ~ ~ - ~  ,.. s = r  

a , (9 
L i = g ~ ( t ) ~ - x i g  i( t)-~-~ ( 5 = i , 2 , 3 ) ,  

a o a 
M== t ' ~  + x i ' - ~  . , N =  t ~'i" + u i ' - ~ .  

An additional four operators, Z2, Z 3 and T2, T 3, may be obtained from Z I, T I through a 
circular permutation of the subscripts. 

The indicated group is infinite-dimensional since gi(t) and ~(t) are arbitrary functions 
from the class C ~. 

3. We consider an invariant solution of the system (l.l) on the subgroup N = t ~/3t + 
u i 3/3u i. We seek this solution in the form 

u 1 = atxl,  u s = atx2, p = cx a + p(xl,  z~), ( 3 . 1 )  

= - - 2 a t x a +  2 V 6 a t l @ l , x ~ ) .  

The components of the stress tensor are then 

~1 = ~2 = • ~2 = O, ~ = - - 2 ~ * ,  ( 3 . 2 )  
�9 s:3 = ~ * / , f ,  s2a = x ~ * / , 2 ,  • = s g n  a,  

~ ,  k~ 
L =  l a i r - -  [ a [ t ' p / ~  ( I + ( V / ) 2 )  -1/2,  V I = f l + / , r  
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Here the function f i s  determined from the equation 

vf 
2 ]/~at = k~:~ div V i + (V]) '~ _ _  +c, 

where c is an arbitrary constant and p can be found from the relations 

Op as. , i f  Op _!.. 052~ 
axi='~Xi T ~ x ,  ' ax2=-~s  " -~x2" 

From Eqs.  (3.4) we obtain, taking the Eqs. (3.1) into account, 

p = - -  • + -~- 

( 3 . 3 )  

(3.4) 

( 3 . 5 )  

Consequently, to determine the velocity field (3.1) we need to solve Eq. 
priate boundary conditions. 

4. We write Eq. (3.3) in the form 

vf 
div v ~ - - b l = % '  

(3.3) with appro- 

(4.1) 

where b = (2]/~al)~s; c = couk s �9 We now use the solution (3.1) to describe plastic flows in a 
cylindrical passage whose generators are parallel to the x3-axis and whose directrix is given 
by the equation F(xz, x 2) = O. We assume here that on the walls of the passage a uniformly 
distributed tangential stress is prescribed: 

~ n = ~ c ~  0 < ~ < ~ / 2 ,  

to it there corresponds the boundary condition 

(~ + ( v / ) D  - m  = k s cos ~,  ( 4 . 2 )  

where  n i s  t h e  i n n e r  n o r m a l  t o  t h e  c u r v e  F (x  t ,  x a)  = O. The p r o b l e m  ( 4 . 1 ) ,  ( 4 . 2 )  a r i s e s  in  
the study of equilibrium surfaces in the hydromechanics of weightlessness [3]. Moreover, if 

is a characteristic passage dimension, the quantity b2s is called the Bond number and 
defines the relationship between the gravitational and capillary forces. 

5. In a three-dimensional problem one cannot expect, in the general case, to be able to 
solve the problem (4.1), (4.2) in analytical form. One can solve it through analytical 
approximations and numerical methods [3]. In particular, if b >> I, we may seek a solution 
of the problem (4.1), (4.2) in the form of the asymptotic expansion 

2 
i=1 i=0 ~' 

where ~ is a parameter reckoned along the directrix F = 0 and h is the distance from a point 
to the directrix reckoned along the normal to F = 0. Here the functions w i are obtained 
from the condition of formally satisfying Eq. (4.1) and the functions vi, of boundary layer 
type, compensate for the discrepancy in the boundary condition (4.2). 

Remark. According to [3], to solve the problem (4.1), (4.2) one can also use variational 
methods, in particular, the method of local variations. 

6. In the axially-symmetric case, if we consider the flow in a circular cylinder of 
radius r0, we can make use of the method described in Section 5 for b >> I. A second case, 
readily amenable to study, is the case Vf << I. If this condition is satisfied, the Eq. 
(4.1), after linearization, is readily converted to 

ri" + ]' brf = rc. 

A solution of Eq. (6.1), bounded for r = 0, has the form 

(6.1)  

S = c d 0 ( r ] / a )  - d b ,  
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where I0 is the Bessel function of imaginary argument. The arbitrary constant co is deter- 
mined from the boundary condition (4.2), which, after linearization, may be written in the 
following way: 

a l l  = k, cos~. 
Or r : r o  

The constant c is determined from the condition requiring preservation of volume. For the 
case in question, the velocity field is 

= ~r, u o = U, ( 6 . 2 )  

= - - 2 a ~  -~ 2"[/&t(r ) - -  d b ) .  

The components of the deformation rate tensor and the stress tensor are given by 

T r z  

e r = a t ,  e 0 = a t ,  e z ~ --2at, 

k s 2k s 

= V=ik,  l'~, ; = ( l / 2 ) , ~ , , + ~ + ~ ( t ) ,  , , o = L B  = o. 

We note that the condition Vf << I is realized, in particular, when [a - ~/2[ << i, i.e., 
when the friction on the walls of the passage is small. 

Remark. The solution (6.2) can also be used in describing plastic flow on a contractible 
cylindrical pipe. 

7. The planar problem is most readily amenable to analysis. In this case the Eq. (4.1) 
may be solved by quadrature and the resulting solution can be used to describe plastic flow 
between rigid plates, which draw together at a constant acceleration. For the planar case we 
write Eq. (4.1) in the form 

d 1,1 (7.1) 

I f  i n  Eq. ( 7 . i )  we make t h e  s u b s t i t u t i o n  f , z  = z ( f ) ,  we h a v e  

z'z ( 7 . 2 )  

From Eq. (7.2) we have 

/,1 ----~/(b12I 2 -6 co/-6 cD -2 - -  i .  

1%t Integrating the latter for c I- ~-~-b < 1 , we obtain 

�9 ~(0-,-zl(o)--~--T g T ' k  - -E(%~)  -6 \ 40 - - ~ -  [g @) -- F (% k)], 

where c~ 

A s=i+c 1-~-; K'=l--q-6~; ~=arcr B=]/~k, 

But if cI -- c02/2b < -i, we then obtain from Eq. (7.3) the result 

( 7 . 3 )  

- - - - ( E  - - ,  V ' ~  (K (k)- -  F (% 

where  ~=arcs in  B Z 2 A ~ ;  k =  B ; F ( r  k )  and E (# ,  k )  a r e  e l l i p t i c  i n t e g r a l s  o f  t h e  f i r s t  

and s e c o n d  k i n d s ,  r e s p e c t i v e l y ;  K(k)  = F ( ~ / 2 ,  k ) .  

C o n s e q u e n t l y ,  in  t h e  p l a n a r  c a s e  t h e  v e l o c i t y  f i e l d  i s  g i v e n  by 

ul = atxl, u2 == atx.z, ~1~ " . . . .  2atx~ -62 V'Sat/(xl), 
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Fig. 1 

and the stress tensor components are given by 

2 ~_ 

1:'7-'1 
~ii ~ 

G I 2  ~ 0"23 ~ 0, 

k~ f [b ~z Lc~-~- 2 Crla--aVg. y 1 - - ( - ~ , - ,  o" el)  " 

This solution can be used to describe the plastic flow of a beam in the shape of a parallele- 
piped of cross-sectional dimensions 2h by 2h and of length 2s compressed by four rigid 
plates, which move towards one another at constant acceleration. A cross section of the 
passage formed by the plates is shown in Fig. i. The plates parallel to the Oxlx3-plane 
approach each other along the x2-axis (smooth); the plates parallel to the Ox2x3-plane 
approach each other along the xl-axis (rough). If we put a = w/h, then w is the acceleration 
with which the plates approach each other along the x I and x 2 axes. The constants c o and 
c I are determined from the condition of incompressibility of the material and from the 
condition at the free end x 3 = ~. This condition, just as in Prandtl's solution in [4], is 
satisfied in the sense of Saint-Venant. The plastic flow of a beam, compressed by four plates 
drawing together at specified rates, was considered in [5]. 
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